Polarized distribution of heme transporters in retinal pigment epithelium and their regulation in the iron-overload disease hemochromatosis.
نویسندگان
چکیده
PURPOSE FLVCR, BCRP, and PCFT/HCP-1 represent the three heme transporters identified thus far in mammalian cells, but there is very little known about their expression and regulation in the retina. In this study, the expression of these transporters in mouse retina and retinal pigment epithelium (RPE) and their regulation in the iron-overload disease hemochromatosis were examined. METHODS The expression of FLVCR, BCRP, and PCFT in mouse retina and primary mouse RPE cells was studied by RT-PCR and immunofluorescence. Polarized localization of the transporters in RPE was studied by co-localization using a specific marker of the RPE apical membrane. Uptake of heme in primary RPE cells was determined using zinc-mesoporphyrin, a fluorescent heme analogue. The regulation of heme transporters by iron overload was studied in two genetic models of hemochromatosis (HFE-null mouse and HJV-null mouse) and in two nongenetic models of iron overload (cytomegalovirus infection and treatment with ferric ammonium citrate). RESULTS All three heme transporters were expressed in the retina and RPE. In the RPE, the expression of FLVCR was restricted to the apical membrane, and the expression of BCRP and PCFT was restricted to the basolateral membrane. In all cases of iron overload, the expression of FLVCR and PCFT was upregulated and that of BCRP was downregulated. CONCLUSIONS Hemochromatosis is associated not only with excessive accumulation of free iron in the retina and RPE but also with excessive accumulation of heme. Since heme is toxic at high levels, as is free iron, heme-induced oxidative damage may also play a role in hemochromatosis-associated retinal pathology.
منابع مشابه
Expression and polarized localization of the hemochromatosis gene product HFE in retinal pigment epithelium.
PURPOSE Hereditary hemochromatosis is an autosomal recessive disorder of iron overload leading to oxidative stress. Mutations in HFE are responsible for approximately 90% of cases of this disease. HFE is the principal regulator of iron homeostasis, and the process involves interaction with transferrin receptor (TfR)-1, transferrin receptor (TfR)-2, and beta2-microglobulin (beta2M). Expression o...
متن کاملExpression and iron-dependent regulation of succinate receptor GPR91 in retinal pigment epithelium.
PURPOSE GPR91, a succinate receptor, is expressed in retinal ganglion cells and induces vascular endothelial growth factor (VEGF) expression. RPE also expresses VEGF, but whether this cell expresses GPR91 is not known. Excessive iron is also proangiogenic, and hemochromatosis is associated with iron overload. Therefore, we examined the expression and iron-dependent regulation of GPR91 in the RP...
متن کاملIron Overload in Diabetic Retinopathy: A Cause or a Consequence of Impaired Mechanisms?
Iron is an essential ion for life, playing a central role in many metabolic processes. The most important property of free iron is its capacity to be reversibly oxidized and reduced, but at same time this make it highly pro-oxidant molecule. In this regard, iron is able to generate powerful reactive oxygen species (ROS). For this reason, careful control on iron availability is central to the ma...
متن کاملHistochemical study of retinal photoreceptors development during pre- and postnatal period and their association with retinal pigment epithelium
Objective(s):The aim of this study was to evaluate distribution and changes of glycoconjugates of retinal photoreceptors during both pre- and postnatal development. Materials and Methods: Tissue sections from days 15 to 20 of Wistar rat embryos and 1 to 12 postnatal days of rat newborns including developing eye were prepared for lectinhistochemistry technique. Horseradish peroxidase (HRP)-label...
متن کاملMorphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 52 12 شماره
صفحات -
تاریخ انتشار 2011